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Abstract

I examine the role of a market-wide volatility factor in the pricing of the cross-section of

returns on individual stock options. While it is commonly accepted that option prices

depend upon the volatility of the underlying asset, recent evidence in the literature

suggests that it is not clear whether market-wide volatility is a priced factor in individ-

ual options. While some studies have found a volatility risk premium implicit in index

option prices, efforts to document the same type of premium using individual stock

options have uncovered little supporting evidence. Applying an improved test design, I

show that market-wide volatility is an economically and statistically important priced

risk factor in the cross-section of stock option returns. This evidence supports recent

theories of market-wide volatility as a state factor.
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1 Introduction

The role of volatility risk in markets has been intensely studied in the recent literature.

Evidence from the cross-section of equity returns suggests a negative price of risk for market-

wide volatility, meaning that investors are willing to accept lower expected returns on stocks

that hedge increases in market volatility.1 Evidence from index options also suggests a

negative price of volatility risk.2 Surprisingly however, the volatility risk premium implicit

in individual stock options does not appear to coincide with the premium implied by index

options.3 Attempts to cross-sectionally identify a negative price of market-wide volatility

risk using stock options have also met with little success.4 Taken together these results

are puzzling, especially when such a tight relationship exists between options and their

underlying stocks.

The options market offers an ideal setting in which to study the pricing impact of sys-

tematic volatility. While far less studied than index options, individual options offer a

much richer cross-section with which to study variation in returns because they vary at the

firm level in addition to the contract level. Furthermore, option prices depend critically on

volatility. Together these facts suggest that using individual stock options data improves the

potential of accurately estimating the price of market-wide volatility risk in the cross-section.

While stock options offer a very promising asset class with which to study the price

of market-wide volatility and potentially other market-wide risks, relatively little is known

about the systematic factors that determine their expected returns. In fact, several papers

1Ang, Hodrick, Xing, and Zhang (2006), Adrian and Rosenberg (2008), Drechsler and Yaron (2011),
Dittmar and Lundblad (2014), Boguth and Kuehn (2013), Campbell, Giglio, Polk, and Turley (2012) and
Bansal, Kiku, Shaliastovich, and Yaron (2013) study the role of market-wide volatility risk in the cross-section
of equity returns.

2See Bakshi and Kapadia (2003a) and Coval and Shumway (2001).
3See Bakshi and Kapadia (2003b), Carr and Wu (2009) and Driessen, Maenhout, and Vilkov (2009).
4Using delta-hedged individual option returns, Duarte and Jones (2007) find no significant price of volatil-

ity risk orthogonal to underlying assets in unconditional models but a significant price in conditional models.
Da and Schaumburg (2009) and Di Pietro and Vainberg (2006) estimate the price of volatility risk in the
cross-section of option-implied variance swap returns but find opposite signs for the price of risk. Driessen,
Maenhout, and Vilkov (2009) argue that returns on individual options are largely orthogonal to the part of
market-wide volatility that is priced in the cross-section.
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have offered strong evidence that options are not redundant securities.5 Coupled with evi-

dence that option returns exhibit some surprising patterns6 as well as demand-based option

pricing,7 this suggests that returns on options are not determined in exactly the same way

as returns on their underlying stocks. Thus, it is important to independently show that

market volatility is priced in the cross-section of returns of stock options. If it is not priced

in the cross-section of a large class of assets like stock options (as has been suggested in the

literature) it would be difficult to make a compelling argument that market-wide volatility

is a state factor.

I empirically investigate the price of market-wide volatility risk in both the equity and

options markets. Specifically, I empirically address two questions: 1) Is a market-wide

volatility factor priced in the cross-section of equity option returns? 2) Is the price of

volatility risk the same in the equity and option markets? It is important to distinguish

between the systematic risk associated with market-wide volatility and the stock-specific

measure of asset volatility, which is often included in models of option prices. I study

whether investors are willing to pay a premium for individual stock options that hedge market

volatility whereas it is commonly accepted that investors are willing to pay a premium for

options whose underlying stocks are volatile. My results show that even though the volatility

risk premium extracted from individual stock options data does not appear to be consistent

with that of index options, systematic volatility is priced in the cross-section of stock option

returns. This supports the notion of volatility as a state factor.

To answer the questions stated above, I first create a new set of option portfolios that

are optimally designed to facilitate econometric inference and to identify the price of market

volatility. Following Constantinides, Jackwerth, and Savov (2013), I adjust the realized

returns of each option in order to reduce the effect of contract-level leverage. This paper is

the first to apply this leverage adjustment to individual option returns instead of index option

returns. The leverage adjustment is econometrically important because it reduces the effect

5See for example Bakshi, Cao, and Chen (2000), Buraschi and Jackwerth (2001) and Vanden (2004).
6See Ni (2008) and Boyer and Vorkink (2014)
7See Garleanu, Pedersen, and Poteshman (2009) and Bollen and Whaley (2004).
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of outliers that arise due to the extreme leverage especially inherent in out-of-the-money

options. Furthermore, the adjustment helps to stabilize the stochastic relation between

option returns and time-varying risk factors. I also propose a new method of sorting options

that results in highly dispersed sensitivity of portfolio returns to market-wide volatility. The

combination of forming portfolios of options and leverage-adjusting each option’s returns

renders standard econometric techniques feasible. This allows me to examine option returns

in a manner typical of cross-sectional studies of stock returns as opposed to the highly stylized

and non-linear models typically used in the option pricing literature.

Using GMM, I test a wide range of stochastic discount factors (SDFs) while control-

ling for factors commonly used to explain the cross-section of stock returns.8 In addition

to augmenting classical linear models with a volatility factor, I also posit SDFs that in-

clude factors from the literature that capture tail risk in equity returns. These factors help

to disentangle volatility risk from the risk of market downturns, controlling for the well-

documented leverage effect whereby market-wide volatility increases when market returns

are negative. I show that market-wide volatility is an extremely important and robust risk

factor in the cross-section. I then compare estimated prices of risk between the equity and

options markets.

My results regarding a priced volatility factor align with the argument that market-wide

volatility is a state factor. However, I find evidence that the price of volatility risk in the

options market is larger in magnitude than in the stock market. This is somewhat surprising

given that others have found volatility risk in options to be non-distinguishable from zero

or to even take the opposite sign. My results are consistent with the demand-based option

pricing theory of Bollen and Whaley (2004) and Garleanu, Pedersen, and Poteshman (2009)

whereby intermediaries facing high demand for options charge larger premiums in order

8I use the Generalized Method of Moments (GMM) in cross-sectional tests because it has several advan-
tages over alternative asset pricing tests when studying option returns. For example, options of different
moneyness tend to exhibit different levels of volatility. Thus standard errors from OLS cross-sectional re-
gression cannot be applied to options due to heteroskedasticity of test assets. Furthermore, because the
sensitivity of an option to time-varying risk factors can dramatically vary with option-specific parameters,
time series regressions used in the first stage of Fama and MacBeth (1973) regressions may be very unreliable
when using options data. GMM does not rely on a first stage time-series to explicitly estimate betas. In fact
applying GMM only requires stationary and ergodic test assets.
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to cover positions that cannot be perfectly hedged. As stochastic volatility is a possibly

unhedgeable risk that dealers face, my findings may be the result of equilibrium pricing in

the market due to market incompleteness. An alternative explanation is simply that there

are limits to arbitrage preventing this apparent mispricing from being arbitraged away. This

explanation is consistent with Figlewski (1989) who shows that arbitrage opportunities in

option markets are costly and often too expensive to exploit in practice. A third explanation

is that the two markets are segmented in such a way that market participants who are willing

to pay more to hedge volatility invest in options.

The remainder of the paper is organized as follows. Section 2 describes the data used

in the paper and the construction of factors used in the econometric analysis. Section 3

describes the test assets used throughout the paper. Sections 4 and 5 present the results.

Section 6 concludes.

2 Data

This section describes the data used in the study. I begin by describing the data sources. I

then describe the filters used to clean the raw data. Finally, I describe the formation and

properties of risk factors used throughout the paper.

2.1 Data Sources

Options data for the paper are from the OptionMetrics Ivy DB database. I use equity

options for the analysis of the cross-section of option returns. I also use index options on

the S&P 500 to construct factors used in the analysis. The OptionMetrics database begins

in January 1996 and currently runs through August 2013. Data include daily closing bid

and ask quotes, open interest, implied volatility and option greeks. The greeks and implied

volatility for European style options on the S&P 500 are computed by OptionMetrics using

the standard Black-Scholes-Merton model, while implied volatilities and greeks for individual

options are computed using the Cox, Ross, and Rubinstein (1979) binomial tree method. The
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OptionMetrics security file contains data on the assets underlying each option in the data.

These data include closing prices, daily returns and shares outstanding for each underlying

stock. For the construction of stock portfolios, I use the entire universe of CRSP stocks over

the same time period as the OptionMetrics data.

As is typical in the empirical options literature, I use options data only for S&P 500 firms.

This partially eliminates the problem of illiquidity in options data. I follow the convention

in the literature and calculate option price estimates by taking the midpoint between closing

bid and ask quotes each day. Since the dates I use for monthly holding period returns are not

the first and last trading day of a calendar month, I use the daily factor and portfolio data

from Kenneth French’s website to construct monthly holding period returns for factors and

portfolios alike. The risk-free rate I use throughout the paper is also taken from Kenneth

French’s website.

2.2 Data Filters

Option deltas (∆) measure the sensitivity of on option’s price to small movements in the

underlying stock. Formally, this is equivalent to defining the delta of an option as the partial

derivative of the option price with respect to the price of the underlying stock. For a given

underlying stock, the delta of put or call options is a monotonic function of option money-

ness. With this logic in mind, I follow the convention in the literature and define option

moneyness according to the option’s delta as reported by OptionMetrics. Out of the money

(OTM), at the money (ATM) and in the money (ITM) puts and calls are defined throughout

the paper by the following:

OTM calls: 0.125 < ∆ ≤ 0.375 OTM puts: −0.375 < ∆ ≤ −0.125

ATM calls: 0.375 < ∆ ≤ 0.625 ATM puts: −0.625 < ∆ ≤ −0.375

ITM calls: 0.625 < ∆ ≤ 0.875 ITM puts: −0.875 < ∆ ≤ −0.625.

I follow Goyal and Saretto (2009), Christoffersen, Goyenko, Jacobs, and Karoui (2011) and

Cao and Han (2013) among others in my data filtering procedure. First I eliminate options
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for which the bid price is greater than the ask price or where the bid price is equal to zero.

Next I remove all observations for which the bid ask spread is below the minimum tick size.

The minimum tick size is $0.05 for options with bid ask midpoint below $3.00 and is $0.10

for options with bid ask midpoint greater than or equal to $3.00. In order to further reduce

the impact of illiquid options, I remove all options with zero open interest. I also remove

any options for which the implied volatility or option delta is missing.

Finally, in order to reduce the impact of options that are exercised early, I follow Frazzini

and Pedersen (2012) by eliminating options that are not likely to be held to maturity. This is

done by first calculating each option’s intrinsic value V = (S−K)+ for calls and V = (K−S)+

for puts, where K is the option’s strike price and S is the price of the underlying stock. I

then eliminate all options for which the time value, defined by (P−V )
P

, is less than 0.05 one

month before expiration, where P denotes the price of the option (estimated by the bid-ask

midpoint). Table 1 gives summary statistics for the filtered options data.

2.3 Option Returns Calculation

Equity options expire on the Saturday following the third Friday of each month. I compute

option returns over a holding period beginning the first Monday following an expiration

Saturday and ending the third Friday of the following month. Even though all options in the

sample are American and therefore have the option to exercise early, I follow the majority

of the literature on option returns and assume all options are held until expiration. The

removal of options with low “time value” described above and in Frazzini and Pedersen

(2012) attempts to remove those options that are likely to be exercised early and not held

until the following month’s expiration date.

The payoff to the option is calculated using the cumulative adjustment factor to adjust

for any stock splits that occur over the holding period. Put and call options’ gross returns

over the month t are given by

RC
t+τ = max

{
0, St+τ

(
CAFt+τ
CAFt

)
−K

}/
Pt, (1)
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and

RP
t+τ = max

{
0, K − St+τ

(
CAFt+τ
CAFt

)}/
Pt, (2)

where τ is the time to maturity.

2.4 Factor Construction

Following Ang, Hodrick, Xing, and Zhang (2006) and Chang, Christoffersen, and Jacobs

(2013), I base my measure of market-wide volatility on the VIX index. Since the VIX

exhibits a high level of autocorrelation, innovations in the VIX can simply be estimated by

first differences, ∆V IXt = V IXt − V IXt−1. Throughout the paper I use VIX/100 because

the VIX is quoted in percentages. This way I use a measure of market volatility as opposed

to market volatility scaled by 100. Innovations in the VIX are highly negatively correlated

with the market factor. This is the well known “Leverage Effect.” In order to ensure that

the volatility factor I use is not simply picking up negative movements in the market level,

I further follow Chang, Christoffersen, and Jacobs (2013) by orthogonalizing innovations in

the VIX with respect to market excess returns. This is simply done by regressing ∆V IX

on market excess returns and taking the residuals as the orthogonalized volatility factor.

This orthogonalized measure of innovations in the VIX is the volatility factor referred to

throughout the paper.

I construct market-wide jump and volatility-jump factors following Constantinides, Jack-

werth, and Savov (2013). The jump factor is defined as the sum of all daily returns on the

S&P 500 that are below −4% in a given month. Since each month in my sample begins

immediately following an option expiration date and ends at the following option expiration

date, the jump factor is simply the sum of all daily returns in this time span for which

returns are below the −4% threshold. If no such days exist, then the jump factor is zero for

the month. Approximately 7% of the months in the sample have a non-zero jump factor.

Finally, I include a volatility jump factor which captures large upward jumps in volatility

of the market. To construct the volatility jump factor, I take all ATM call options on the

S&P 500 and calculate the equally weighted average of implied volatilities over all options
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between 15 and 45 days to maturity. This gives me a series of daily average implied volatil-

ities of ATM call options. Over each holding period I then take the sum of daily changes in

implied volatility for all days in which the change is greater than 0.04. Approximately 29%

of months in the sample have non-zero volatility jump.

Downside risk has been proposed as a state variable in the ICAPM and has been shown

to perform very well for pricing stocks in Ang, Chen, and Xing (2006) and across a number

of additional asset classes including currencies, bonds and commodities in Lettau, Maggiori,

and Weber (2013). I follow Lettau, Maggiori, and Weber (2013) by defining a down state

to be any month in which market returns are below the mean of monthly returns over the

sample period by an amount exceeding one standard deviation of returns over the sample

period. The down-state factor is simply equal to returns on the CRSP value-weighted index

in periods when the returns are below the down state threshold. In all other months the

factor is zero. This gives a factor that is very similar to the jump factor. The main difference

between the two is that the jump factor is computed using daily data to determine when

the market has experienced a jump. The magnitude of negative daily returns required to

be considered a jump is much more extreme than the one standard deviation measure used

to establish a down state. Furthermore, because jumps are defined at a daily frequency,

they can more convincingly be considered jumps in the return process as opposed to simply

months where the market slowly declines. Approximately 13% of months in the sample have

non-zero down-side risk.

Finally I include model-free, implied risk-neutral skewness as a down-side risk. I follow

Bakshi, Kapadia, and Madan (2003) to construct a measure of risk-neutral market-wide

skewness. I then take innovations of the skewness factor by estimating an ARMA(1,1)

model and taking residuals of the estimates. I use these residuals as an additional control

for the main tests of volatility risk.

Figure 6 shows the time series of each of the volatility, jump, volatility-jump, down-side

and skew factors. Panel B shows the orthogonalized volatility factor with the original, non-

orthogonal factor in the background. Each of the factors has its largest spike during the
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recent financial crisis. More recently there are fairly large spikes during the U.S. debt-ceiling

crisis in August of 2011. Volatility and volatility-jump experienced very large jumps around

the terrorist attack of September 11, 2001. Table 5 gives pairwise correlations of the three

factors as well as the Fama-French and Momentum factors. The construction of the latter

factors are described in the appendix.

3 Portfolio Construction and Summary Statistics

In order to study the determinants and behavior of risk premia in the cross-section of option

returns I construct 36 portfolios of options that are sorted along three dimensions. The

portfolios are constructed in order to give dispersion in mean returns and exposure to changes

in the VIX.

3.1 Portfolio Construction

I form portfolios of options by first dividing the options into six bins according to type: calls

and puts, and three moneyness categories as defined in Section 2.2. Within each of these

six bins I sort into another six portfolios according to each contract’s Black-Scholes-Merton

implied volatility premium. For each option k on stock j, I measure the implied volatility

premium (IVP) by

IV Pj,k = σBSMj,k − σHistj ,

where σBSMj,k denotes the Black-Scholes-Merton implied volatility extracted from option k’s

price and σHistj is the historical volatility of the underlying stock. I estimate σHistj from daily

returns over the previous year leading up to the beginning of each holding period.

The IVP measure is similar to the sorting measure of Goyal and Saretto (2009) but rather

than measuring the ratio of implied volatility to historical volatility of the underlying, I take

the difference, which represents the premium due to model-implied volatility in excess of

historical volatility. Another difference between the way I sort options and the method

employed by Goyal and Saretto (2009) is that I sort at the contract level as opposed to just
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taking a single at-the-money option for each underlying stock and comparing the two. This

gives my set of portfolios greater dispersion in loadings on innovations in the VIX than does

the set of portfolios studied in Goyal and Saretto (2009).

To construct a set of equity portfolios, I follow Ang, Hodrick, Xing, and Zhang (2006). I

use the entire universe of CRSP stocks to double sort stocks according to their loadings on

the market excess return and changes in the VIX. On the first day of each holding period I

calculate the CAPM betas of each firm over the previous month’s daily returns. I only include

firms for which CRSP reports returns on every trading day over the previous month. The

stocks are divided into two bins according to their loading on the market factor. Within each

bin I then estimate a two factor model with market excess returns and changes in the VIX

over the previous month and sort into six portfolios based on loadings on the second factor

within each market loading category. This gives a total of twelve portfolios. I choose twelve

portfolios so that they can be compared with the twelve ATM option portfolios. I choose to

divide first into two market loading bins and then into six VIX innovation portfolios in order

to maximize dispersion in loadings on volatility innovations while still double sorting in the

manner of Ang, Hodrick, Xing, and Zhang (2006). Once the portfolios are formed, they are

held for the one month holding period for which value-weighted returns are calculated. At

the end of the month, the portfolios are rebalanced.

In unreported results, I find that sorting according to the systematic risk preimium

described in Duan and Wei (2009) produces similar results to those described in Section 4.

Furthermore, the results do not appear to be sensitive to the number of portfolios.

3.2 Portfolio Returns

Options are levered claims on the underlying stock. As a result of their embedded leverage,

they tend to have loadings on systematic risk factors that are much larger than those of the

underlying stock. It is very common for options to have market betas up to twenty times that

of the underlying. This leverage effect can lead to very skewed returns on options. Highly

volatile and skewed distributions are not well suited to estimating linear pricing kernels
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because a linear SDF is typically not able to capture such extremes. This fact makes linear

factor models and the linear stochastic discount factor they imply a poor tool for analyzing

raw option returns.

The embedded leverage of options further reduces the effectiveness of standard cross-

sectional asset pricing techniques by rendering factor loadings less stable. In the Black-

Scholes-Merton world, loadings of options on any risk factor are approximately equal to the

loading of the underlying on the factor scaled by the leverage of the option. The leverage

of each option is a function of instantaneous volatility of the underlying which presumably

is correlated with volatility of the market. As such the correlation of an option with a

risk factor changes with market volatility. This means that even if one forms portfolios of

options, the portfolio loadings on risk factors will be sensitive to large changes in volatility.

Cross-sectional regressions will thus be sensitive to the instability of portfolio factor loadings.

Forming portfolios of option returns helps to dampen the effect of outliers and thus re-

duces skewness and excess kurtosis. It also mitigates the problem of the sensitivity of factor

loadings to changes in volatility by dampening the effect for those options whose factor

loadings are the most sensitive to volatility. Leverage adjusting returns further reduces the

effect of each problem. In a world where the Black-Scholes-Merton model holds perfectly,

continuously adjusting each option according to its implied leverage will completely solve

both problems. As long as the SDF projected onto the space of stock returns can be ad-

equately estimated by a linear model, continuous leverage adjustment renders linear factor

models capable of pricing options. Given the well-documented shortcomings of the Black-

Scholes-Merton model and the fact that it is impossible to adjust leverage in continuous

time, the best we can hope to do with this leverage adjustment is to approximately correct

both problems.

The Black-Scholes-Merton implied leverage of an option is given by the elasticity of the

option price with respect to the underlying stock’s price,

ωBSMj,i,t = ∆j,i,t
Si,t
Pj,i,t

,
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where ∆j,i,t is the time t Black-Scholes-Merton option delta for option j on stock i, Si,t is

the price of the underlying stock and Pj,i,t is the price of the option. Table 2 gives summary

statistics for the Black-Scholes-Merton implied leverage of option contracts in the sample.

In order to leverage-adjust the returns, I calculate the gross returns to investing (ωBSMj,i,t )−1

dollars in option j and 1− (ωBSMj,i,t )−1 in the risk free rate. Since ∆ is negative for puts and

positive for calls, this amounts to a short position in puts and long position in calls. Leverage

adjusted returns on the individual options are thus a linear combination of the returns on the

risk free rate and returns calculated in Equations (1) and (2). Leverage adjustment is done at

the beginning of the holding period, when the position is opened. Thus the leverage-adjusted

returns are the returns to a portfolio composed of an option and the risk-free rate where the

weight in the option is inversely related to its leverage. Unlike Constantinides, Jackwerth,

and Savov (2013), I hold the portfolio fixed over time and do not re-adjust leverage as the

option’s leverage evolves over time. A trading strategy with daily adjustment would incur

very high transaction costs since the costs of buying and selling options is generally much

higher than the cost incurred when buying and selling more liquid securities. Therefore, in

order to replicate a more feasible trading strategy, I create portfolios that do not change

over the course of the holding period. The obvious trade off is that these portfolios will not

be as free of excess kurtosis and skewness as they would be in the case of daily rebalancing.

The majority of papers in the empirical option pricing literature examine delta-hedged

returns in order to study profitability of trading strategies where investors have taken a delta-

hedged position in options. The risks whose prices are estimated using delta-hedged option

returns like those in Duarte and Jones (2007) are risks orthogonal to the underlying asset. In

this paper I examine the price of total volatility risk because this is the risk estimated from

the cross-section of equity returns. It is also the risk whose premium is implicitly estimated

by looking at the difference between risk-neutral and physical moments of the underlying

asset as in Carr and Wu (2009) and Driessen, Maenhout, and Vilkov (2009). Since the

purpose of this paper is to resolve the apparent discrepancy between prices of total volatility

risk in options and equity, I do not delta hedge option returns.
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Finally, to compute portfolio returns within each of the 36 portfolios, I weight the

leverage-adjusted returns. In order to facilitate the comparison between the underlying stock

returns and portfolios of option returns, I weight the options by the market capitalization of

the underlying stock. This is standard practice in the equity pricing literature.

3.3 Summary Statistics

Table 3 gives summary statistics for the 36 value-weighted option portfolios. Panel A reports

the annualized percentage mean returns of each of the 36 portfolios over the 200 months rang-

ing from January 1997 through August 2013. The mean of the call portfolios is increasing in

implied volatility risk premium while the mean of the put portfolios tends to decrease pro-

gressing from the lowest implied volatility premium, IVP1 to highest IVP6. Recall however

that puts have a negative ∆ and hence negative leverage, so the put portfolios are actually

portfolios of short positions in the option. Therefore, long positions in the put portfolios

earn increasing mean returns as a function of IVP. The dispersion in mean returns is much

larger for the puts than calls but in all cases except ITM calls, the difference between mean

returns in IVP1 and IVP6 is very large. As has been shown in the literature (see e.g. Coval

and Shumway (2001)), selling puts is very lucrative because investors are willing to pay a

premium to use puts as a hedge against large losses, so the large returns in the put portfolios

is not surprising.

High levels of returns for puts and decreasing mean put returns as a function of moneyness

are consistent with economic theory. The call portfolios however, exhibit increasing mean

returns as a function of moneyness. As shown by Coval and Shumway (2001), if stock returns

are positively correlated with aggregate wealth and investor utility is increasing and concave,

then returns on European call options should be negatively sloped as a function of strike

prices. While the options used in this paper are American, I have removed options that

are likely to be exercised early so reasoning similar to that in Coval and Shumway (2001)

should be applicable here. This is not the first paper to document this pattern in mean

returns of equity call options; Ni (2008) documents this puzzle. She shows that considering
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only calls on stocks that do not pay dividends and hence should never be exercised early,

this pattern still shows up in the data. Furthermore, the pattern is very robust to different

measurements of returns and moneyness. The explanation proposed by Ni is that investors

in OTM call options have preferences for idiosyncratic skewness for which they are willing

to pay a premium in OTM calls.

Panel B reports annualized return volatility of each value-weighted option portfolio in

percent. Volatility is monotonically decreasing in moneyness for the put portfolios. For

the call portfolios the pattern is less clear. We also see that volatility is higher for the put

portfolios than for the calls. Panels C and D report monthly measures of skewness and

kurtosis for each portfolio. As can be seen in Figure 6, the put portfolios are negatively

skewed while the calls are positively skewed. Furthermore, the magnitude of the skewness

is highest in OTM options and tends to decrease monotonically in moneyness. Similarly,

kurtosis is largest in OTM options and smallest in the ITM options, with a monotonic,

decreasing pattern in moneyness. The purpose of forming leverage-adjusted portfolios of

option returns is to reduce excess skewness and kurtosis, thus rendering portfolio returns

nearly normally distributed. While the skewness measures are not equal to zero as one

would ideally like to have, they are much smaller in magnitude than the skewness of raw

option returns. For example, the absolute value of skewness for the empirical distribution of

raw returns on all calls and puts used to form the portfolios are on average 4.769 and 6.263

respectively. Return kurtosis is reduced even more dramatically by forming the leverage-

adjusted portfolios. The normal distribution has a kurtosis of 3. The kurtosis of the leverage-

adjusted portfolios ranges from 3.763 to 14.615. The kurtosis of raw realized option returns

of the options dwarfs that of the leverage-adjusted portfolios. This is most noticeable in the

OTM options. The average kurtosis of the empirical distribution of raw returns on OTM calls

is 44.297 while that of the OTM puts is 83.697. This means that forming portfolios of leverage

adjusted returns reduces kurtosis by nearly 90% in OTM puts and 75% in OTM calls. That

is, the shape of the tails of the empirical distribution of the OTM option portfolios is much

closer to the that of a normal distribution than are the tails of the empirical distribution of
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raw returns on OTM options.

Panel E shows the CAPM betas for each portfolio. Recall that the put portfolios are

actually short puts. This is why the betas reported for the puts are positive. Betas are

monotonically increasing in moneyness for the calls and for the most part decreasing in

moneyness for the puts. The betas on the calls are below one while the betas on the puts

are mostly above one. Comparing these with the CAPM betas on the stock portfolios shown

in Table 4 gives an indication of the leverage reduction achieved by leverage adjusting the

returns in the option portfolios. It is quite common for options on individual stocks to have

Black-Scholes-Merton implied leverages with magnitudes in excess of 20. If an option on a

stock has an implied leverage of 20, then in the Black-Scholes-Merton world, for any risk

factor, the beta of the option on that risk factor will be 20 times that of the underlying

stock. In the case of the put portfolios, the CAPM betas are magnified by roughly 15%

above those of the corresponding stock portfolios in Panel A of Table 4. In the case of calls,

the betas are reduced by about 25% on average. In both cases this suggests a fairly low level

of implied leverage in the options.

Panel F of Table 3 reports betas on systematic volatility in the two factor model

Ri,t = βM,iMKTt + β∆V IX,i∆V IXt + εi,t, (3)

whereMKTt denotes time t excess returns on the market and ∆V IXt denotes first differences

in the VIX index. The factors used to proxy for market returns and volatility innovations are

formed as described in Section 2.4. The volatility betas of call portfolios are much smaller

in magnitude than the volatility betas of the put portfolios. Half of the call portfolios betas

are statistically significant at the 5% level. On the other hand, all of the volatility betas

except that of the ITM IVP6 portfolio are highly significant. The average t-statistic of the

put portfolios’ volatility betas is −4.33, while that of the call portfolios is only 1.36. The fact

that the puts appear to load so much more on the volatility factor suggests that if systematic

volatility is indeed priced in equity options, the premium is more likely to be evident in the

puts than the calls. Again, since the put portfolios are actually short puts, the loadings
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on volatility are negative. In both call and put portfolios, the magnitude of volatility betas

decreases monotonically in moneyness.

Table 4 reports summary statistics for the stock portfolios. The portfolios are comprised

of all CRSP stocks over the 200 months ranging from January 1997 through August 2013.

The columns of each panel in the table represent sorts according to betas on market excess

return over the previous month of daily data. Rows represent sorts according to loadings on

volatility innovations. Panel A reports post formation value-weighted mean returns. For the

most part, the post ranking mean returns are higher for the high market beta than the low

market beta group. Mean returns to the portfolios are generally decreasing in loadings on

the volatility factor as one would expect given that stocks with higher loadings on the VIX

act as a hedge agains high volatility states and investors are thus willing to pay a premium

for these stocks. The monotonicity in mean returns along the volatility loading dimension

is not particularly strong. This is due to the fact that the formation period is only a month

long.

Panel B reports annualized percent volatility. There is clear heteroskedasticity between

the two market loading bins with the higher market-loading stocks having substantially

higher volatility. Skewness is negative for all portfolios and tends to be larger in magnitude

for the low market beta stocks than for the high beta stocks. The stock portfolios are

less skewed than the option portfolios but the difference is not very dramatic. Similarly, the

kurtosis of the stock portfolios is slightly smaller than the option portfolios except in the case

of OTM puts where the kurtosis is most extreme. Figure 6 plots the histograms of realized

returns for each of the six put/call and moneyness bins as well as the realized returns of all

puts and all calls separately and all ATM options. Over each is the kernel density estimate

of the empirical return distribution of the stock portfolios. One can see from the figure that

skewness and variance of the option portfolios is not very different from that of the stocks

except perhaps in the case of the OTM calls.

The post ranking CAPM betas of the stock portfolios are much larger for the stocks

with large formation period betas suggesting that stocks’ covariation with the market is
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fairly stable. On the other hand, Panel F shows that the post-ranking volatility betas do not

exhibit a clear monotonic pattern. This indicates that at least with the one month formation

window, stocks’ loadings on innovations in the VIX are less stable.

4 Pricing Kernel Estimation

In this section I test a number of specifications of pricing kernels to assess the importance of

volatility for the SDF projected onto the space of option returns. Throughout this section

I use the Generalized Method of Moments of Hansen (1982) and Hansen and Singleton

(1982) to perform the asset pricing tests. Since the tests combine various portfolios of

options as well as stocks, using GMM circumvents any problems that may arise due to

heteroskedasticity across asset classes or moneyness-put/call bins that are shown to exist in

Tables 3 and 4. An additional advantage of the GMM methodology over regression-based

cross-sectional tests like Fama and MacBeth (1973), is the fact that it avoids the error-in-

variables problem associated with estimating risk factor loadings in time-series regressions

which are subsequently used as independent variables in the cross-sectional regression. This

errors in variables problem is particularly glaring in the case of option returns. If one uses

individual options as test assets and computes returns to the value of the option at multiple

times over the course of the option’s lifetime, then any changes in leverage of the option

will result in changes in factor loadings in time series regressions. Furthermore, the most

liquid options are short dated, meaning that time-series regressions on option returns used

in the first step of a procedure like Fama-MacBeth cannot be estimated with a very long

time series.

The use of GMM coupled with the option portfolios described in Section 3 allows me

to circumvent the errors in variables problem. GMM estimation does not require test asset

returns to be iid conditional on risk factors. All we need is for our time series of portfolios

to be stationary and ergodic.9

9In an unreported test, all but one of the 36 option portfolios described in Section 3 were able to reject
non-stationarity at the 1% level using an the Augmented Dickey-Fuller test for non-stationarity. The one
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4.1 GMM specification

In order to investigate the importance of market-wide stochastic volatility in the cross-section

of option returns, I apply the GMM methodology of Hansen and Singleton (1982) to various

specifications of a linear pricing kernel. The specifications include factors commonly used

in the empirical asset pricing literature. In this sense, the models used in this paper are

directly comparable to some of the most well known reduced form models used to study the

cross-section of stock returns. I augment the models with the volatility factor in order to

assess the importance of market-wide volatility in the SDF.

In addition to factors studied widely in the classical asset pricing literature, I include

factors meant to capture market jump risk and market volatility jump, both of which are

commonly included in theoretical option pricing models.10 I include additional factors meant

to capture extreme movements in the market that have been shown to perform well in pricing

the cross-section of stock returns. All of these additional factors track extreme movements in

the market and are meant to control for the fact that volatility can be difficult to distinguish

from downturns in the market level or large changes in the market level.11

For each specification of the pricing kernel, I use the two step optimal GMM to estimate

the prices of risk associated with each factor. The first stage estimation uses the identity

weighting matrix. In the second stage estimation the weighting matrix is set equal to the

inverse of the covariance matrix estimated from the first stage. I estimate the weighting

matrix using the Newey and West (1987) spectral density estimator with 6 lags. As a

robustness check I also run the same set of tests with a one-step GMM using the identity

weighting matrix and also the one-step GMM using the weighting matrix of Hansen and

Jagannathan (1997). In both cases the results are similar to those reported in this section.

The volatility factor is significant at the 5% level in all specifications with both versions of

the single-step GMM and the point estimates are very similar to those obtained with the

portfolio that was not able to reject at the 1% level did reject at the 10% level and the GMM estimation
results of this section are not substantially changed by removing this single portfolio.

10See for example Pan (2002) and Eraker, Johannes, and Polson (2003).
11See Bates (2012) for a discussion of difficulties related to disentangling volatility from large changes in

market level.
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2-step GMM.

In each specification of the pricing kernel M , the first N moment restrictions in the GMM

test with N test assets are given by

E [MtRj,t]− 1 = 0, (4)

for j = 1, 2, ...., N, where Rj,t denotes the time t gross return of portfolio j. The final

moment condition which is implied by the risk-free rate is given by

E [Mt]−
1

Rf
= 0, (5)

where Rf denotes the risk-free rate.

4.2 Linear Pricing Kernels

In this section I restrict our attention to linear pricing kernels of the form

Mt = a+ b′ft,

where f is a vector of risk factors, b is a fixed vector of prices of risk and a is a constant.

Tables 6, 7, 8 and 9 report the results for five specifications of the linear pricing kernel.

The first is the single factor model with only the volatility factor. The second and third

models are respectively the standard CAPM and the CAPM augmented with volatility.

Model four is the Fama-French/Carhart four factor model and the fifth model is the volatility-

augmented version of model four. For each model I report point estimates of the coefficients

with t-statistics in parentheses. The final two columns of each table report the J-statistic and

associated p-value as well as the Hansen-Jagannathan distance which measures the distance

between the implied stochastic discount factor and the set of feasible discount factors.

Table 6 reports results of the tests using all 36 option portfolios. The coefficient on the

volatility factor is positive and very significant in each specification. A positive coefficient

in the SDF implies that investors’ marginal rates of substitution are increasing in volatility.
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This means that investors are willing to pay a premium for assets that covary positively with

innovations in volatility. In other words the price of volatility risk is negative. For both the

CAPM and the four factor model, adding volatility substantially reduces the J-statistic and

the Hansen-Jagannathan distance measure, indicating that the model fits the data much

better with the volatility factor than without.

Data filters are implemented to remove illiquid options and I only consider options on

S&P 500 constituents in order to avoid results driven by illiquid options. In order to further

alleviate any concerns about illiquidity driving the results, I examine just the ATM option

portfolios separately as these are the most liquid options according to trading volume. Table

7 reports the results which are quite similar to the tests with the full set of option portfolios.

The volatility factor is always positive and significant and given the fact that we only have

twelve test assets, the significance is very strong. In each specification, the model fit is

substantially improved with the addition of the volatility factor.

Table 9 reports the pricing kernel estimates for the ATM options and the 12 stock port-

folios combined. If volatility is a priced risk factor in the SDF, then the projection of the

SDF onto the combined space of stocks and options should also have a positive, significant

coefficient. This is confirmed in Table 9. It is worth noting that for the combined stock port-

folios and ATM option portfolios, the reduction in J-statistics due to adding the volatility

factor are very small. However, the Hansen-Jagannathan distance is substantially reduced.

In the case of the SDF projected onto the space of stock returns only, Table 8 shows that

the fit of the four-factor model improves with the addition of the volatility factor but the

two-factor model actually fits worse with the addition of volatility. The volatility coefficient’s

point estimates for both the stock portfolios as well as the combined stock and ATM option

portfolios are well below the point estimates for the full set of option portfolios.

The takeaway from Tables 6, 7, 8, 9 is a clearly priced systematic volatility risk factor in

option returns. To assess the economic magnitude of the volatility premium one can easily

use the coefficient in the SDF to calculate λV OL, the implied market price of the the volatility

risk. λV OL is equivalent to the prices of risk typically estimated in the second step of Fama-
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MacBeth regressions. In the case of the full model (model 5), the market price of volatility,

λV OL is equal to -4.13% per month or -62.5% annualized. We can get a sense of how much

of the difference in mean returns of the OTM puts and ITM puts is driven by volatility risk

by comparing the average volatility betas for each group. For model 5, the average volatility

betas for OTM puts and ITM puts are −0.7042 and −0.3482 respectively. Exposure to

aggregate volatility therefore accounts for (−0.70− (−0.35))×−4.13% = 1.47% monthly or

19% annualized spread in returns between ITM and OTM puts. For the calls the average

OTM beta is 0.238 and the average ITM beta is −0.013. Exposure to aggregate volatility

therefore accounts for (−0.013 − 0.238) × −4.13% = 1.37% monthly or 17.7% annualized

spread in returns in the calls. Thus the volatility premium is economically significant as well

as statistically significant. It is also worth noting that the implied price of risk, −4.13% per

month is 18% larger than the −3.49% price of risk estimated in Chang, Christoffersen, and

Jacobs (2013) using stocks.

In an unreported robustness check, I run all of the tests with the same portfolio sorts but

weight returns by option open interest rather than stock market capitalization. The results

are similar. Volatility is always significant at the 5% level and the point estimates are similar

to those reported in Tables 6, 7, 8, 9.

4.3 Exponentially Affine Pricing Kernels

In order to check that the linear form assigned to our pricing kernel is not responsible for

the strong significance of the market-wide volatility factor, I test the same set of CAPM and

Fama-French-Carhart factors augmented with volatility using an exponentially affine pricing

kernel instead of a linear pricing kernel. Whereas standard asset pricing models assume

a linearized SDF, the exponentially affine pricing kernel is closer to the kernel derived by

hypothesizing a utility function for a representative investor and then solving for the marginal

rate of substitution. For an investor with CRRA utility, the SDF can be expressed as

Mt = β

(
Ct+1

Ct

)−γ
,
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where Ct denotes time t consumption, γ denotes the coefficient of relative risk aversion and

β denotes the investors discount rate. By taking the exponential of the log of the pricing

kernel this can be transformed to the exponentially affine form

Mt+1 = e
logβ−γlogCt+1

Ct .

I use an exponentially affine pricing kernel which assumes a similar form,

Mt+1 = ea+b′ft+1 , (6)

where b is a deterministic vector of coefficients and f is a vector of risk factors. The log-utility

CAPM is a special case of the SDF in Equation (6) where a = 0, b = −1, f = logRW and

RW is return on the wealth portfolio. The exponentially affine framework is better suited

for analyzing skewed payoffs like options as it does not rely on linear approximations of the

functional form of investors’ marginal rates of substitution. Continuous time versions of

exponentially affine pricing kernels are commonly used in structural option pricing models,

where the factors are typically specific to the underlying asset as opposed to systematic

factors.

Tables 10, 11, 12 and 13 report the results of GMM tests using the pricing kernel defined

in Equation 6 with the same set of factors from Tables 6, 7, 8, 9.12 The results again

show that market-wide volatility is a significantly priced factor in the cross-section of option

returns. The point estimates cannot be directly compared to those in the linear models.

However, the volatility factor is estimated to be significantly positive. Table 10 reports

the results from a one-step GMM estimation where the weighting matrix is set equal to

the identity matrix. This greatly reduces the power of the test but is meant to allay any

concerns about unstable inversion of the weighting matrix in nonlinear GMM estimation

when the number of time series observations is not very large compared to the number of

12I also test the exponentially affine models with the non-orthogonalized volatility factor. I do this because
the orthogonalization is linear with respect to market excess returns and I want to be sure that the linear
nature of the orthogonalization is not responsible for the results in a nonlinear model. The results for the
coefficient on the volatility factor were virtually unchanged.
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cross-sectional observations.13 Using all 36 option portfolios, the volatility factor is signifiant

at the 5% level for the two models containing the market factor. In the single factor model

the volatility factor is only significant at the 10% level. Given that the combination of a

single step GMM and a non-linear model substantially reduces the power of the test, the

fact that the volatility factor is still significant can be regarded as strong evidence in favor

of the volatility factor.

Tables 11 and 13 give the results of the tests with only the ATM options and the combined

portfolios of ATM options and the 12 stock portfolios. In all specifications the volatility factor

is very significant. In the case of the test with only ATM options, including the volatility

factor drastically reduces the J-statistic and the Hansen-Jagannathan distance, especially

in the case of the 4-factor model. The results are not so strong when the ATM options

are combined with the 12 stock portfolios in Table 13, however the volatility factor is still

significant in all specifications, indicating that market-wide volatility plays an important

role in the SDF projected onto the joint space of stock and option returns. This holds true

despite the fact that for the stock portfolios alone, there is little evidence that the volatility

factor is significant in Table 12. This is important for two reasons. First, it indicates that

we have more power to estimate the role of market-wide volatility in the SDF when using

options than using the same number of stocks portfolios. Comparing the 12 ATM option

portfolios with 12 stock portfolios sorted in a way that has been the most successful thus far

in the literature at showing a significant volatility factor, it is clear that the option portfolios

are a more powerful set of test assets. Second, even if the SDF projected onto one space

shows the volatility factor to be statistically insignificant, it is entirely possible that the

factor is still significantly priced in the SDF. It may just be the case that the space of stock

returns is orthogonal to the volatility factor in the SDF while the space of option returns is

not orthogonal to the factor. If this is the case, we still expect to find that when estimated

from returns on the joint space of stock and option returns, the factor should be significant

as we find in Table 13.

13See Ferson and Foerster (1994) and Cochrane (2005) for discussions about GMM and small sample
properties.
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4.4 Pricing Kernels with Tail Risk

As first noted by Black (1976), volatility of the market is negatively correlated with the mar-

ket’s level. Table 5 shows that in the sample period 1997 through 2013, monthly innovations

in the VIX and excess market returns are highly negatively correlated. This is the reason

for using orthogonalized VIX innovations in the analysis throughout the paper. More re-

cently Bates (2012) discusses the difficulty of separating changes in volatility from jumps. A

number of papers have also shown that the risk neutral distribution of stock indices exhibit

higher volatility, more negative skewness and have heavier tails than their corresponding

physical distributions.14 This indicates that option prices reflect premia for skewness and

kurtosis as well as volatility. Furthermore, Bates (2000), Pan (2002) and Eraker, Johannes,

and Polson (2003) have shown that jump risk tends to increase during times of higher market

volatility. Taken together, all of these empirical regularities suggest that the risk premium

attributed to market-wide volatility in our earlier tests may actually be due to fears of tail

events. In this section I include additional factors in specifications of the SDF in order to

control for the possibility of tail risk driving the significant volatility premium documented

thus far. Tables 14, 15, 16 and 17 give results of linear models for the SDF with additional

factors described in Section 2.4.

Tables 14 and 15 report results for test assets comprised of all 36 option portfolios and

the ATM portfolios respectively. The clear result from these two tables is that volatility risk

carries a significant, positive coefficient (and hence a negative price of risk) even when we

control for tail risk. While some of the tail-risk factors appear to be significant in a number

of the specifications, volatility is the only factor that is significant in all specifications in

both tables. In Table 14, with all 36 option portfolios as the test assets, downside risk also

appears significant and skewness is significant at the 10% level. However, in Table 15 where

the test assets are the 12 ATM portfolios, neither is significant. This is likely to be at least

partially attributable to the fact that we have a small number of test assets and thus less

cross-sectional variation. However, volatility is clearly significant even with the small number

14See Jackwerth and Rubinstein (1996), Jackwerth (2000) and Bakshi, Kapadia, and Madan (2003).
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of test assets and the additional controls for tail risk. It is also worth noting that the jump

factor does not appear to be significantly priced even though jumps are often modeled in

option returns. However, the jumps included in theoretical option pricing models are jumps

in the underlying asset as opposed to market-wide jumps. Of course in the case of index

options where the relation between jumps and option prices have been most studied (see

for example Pan (2002) and Eraker, Johannes, and Polson (2003)), on cannot distinguish

between market-wide risks and risks inherent only in the underlying asset.

Table 16 reports the results for the stock portfolios test assets. In this set of tests the

volatility factor remains marginally significant at best. This could largely be due to the fact

there is a small number of test assets. However, when compared to the 12 ATM option

portfolios, it is clear that the volatility factor is much more prominent in the options than in

the stock portfolios. In Table 17 where stocks and ATM options are the combined test assets,

volatility is again very significant. Here skewness and downside risk are also significant.

The results of this section indicate that not only is market-wide volatility a significant

risk factor in the cross-section of individual option returns, but it is distinct from market-

wide tail risk. Taken together with tests in the previous sections this suggests that volatility

is a very robustly priced risk factor in the cross-section.

5 Likelihood Ratio-Type Tests

In this section I test whether the prices of risk estimated using options differs from those

estimated using the underlying stocks. The tests I use are special cases of those described

in Andrews (1993). They are also known in the econometrics literature as likelihood ratio-

type tests for GMM models. These tests combine stock and options data in restricted and

unrestricted GMM tests and compare the resulting objective functions. In this way, the

intuition behind the tests is similar to likelihood ratio tests. Of course the difference is that

in this setting we have not specified a parametric likelihood function. Here, as in the previous

section, I use GMM because I estimate models that simultaneously use stock portfolios and

different option portfolios to estimate models. Tables 3 and 4 demonstrate the need for
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taking into account possible heteroskedasticity across assets.

Similar to likelihood ratio tests, the GMM likelihood ratio-type test compares the value of

an objective function under the null hypothesis to its value under an alternative hypothesis.

For the purpose of testing prices of risk in two markets, the comparison is made between

models that fix the coefficients on risk factors to be the same in the option and equity pricing

kernels and those that relax this assumption. I perform the tests by relaxing the assumption

on the volatility factor and comparing the resulting unrestricted GMM objective function to

the restricted objective function. Namely, the null hypothesis is

H0 : bSV OL = bOV OL

where bSV OL and bOV OL are the prices of risk in the stock and option markets respectively.

For each proposed model, I estimate the restricted version by pooling stock portfolios

together with option portfolios so that the test assets are a mix of the 12 stock portfolios

and 12 ATM option portfolios. The results of estimating the restricted models are given in

Table 9. For each model I test the restriction by relaxing H0 and comparing the resulting

fit to the corresponding model fit in the restricted model.

Since the tests compare GMM objective functions with and without a linear restriction,

one needs to be sure that the difference in objective functions is not driven by the weighting

matrix but is driven only by differences due to relaxing the restriction on a given factor.

I therefore use the second stage weighting matrix from the restricted model estimation to

estimate the unrestricted model in a single step GMM. This also ensures that the test statistic

has a well defined asymptotic distribution. In particular, the test statistic has the asymptotic

distribution given by

LRGMM = T
(
m(θ̂R)′W (θ̂R)m(θ̂R)−m(θ̂U)′W (θ̂R)m(θ̂U)

)
→ χ2

1, (7)

as T →∞, where T denotes total number of observations, θ̂R and θ̂U denote estimated vectors

of prices of risk under the restricted and unrestricted models respectively and m(θ̂R) and
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m(θ̂U) denote empirical means of moment restrictions under the restricted and unrestricted

models.

Table 18 gives the test statistics and corresponding p-values for each likelihood ratio-type

test. Rows represent the models used for each test. Columns represent the variable whose

price of risk is being tested. Of the three baseline models testing the volatility factor, one

shows a significant difference between the restricted and unrestricted model at the 5% level

and the remaining two give significant test statistics at the the 10% level. This suggests

that the price of systematic volatility risk is not necessarily the same in the equity and

option markets. Although these results suggest that there may be difference in the prices

of volatility risk between the two markets, the difference is likely to fall within no-arbitrage

bands as it is well known that no-arbitrage option price ranges can be fairly wide.15

The fact that there is a difference between prices of volatility risk in the stocks and

put options is akin to there being a significant price of risk in delta-hedged returns of put

options. Whereas delta hedged options look directly at the option with the risk due to the

underlying subtracted off, the results here look at the difference in prices estimated from

options and stocks separately. These are two similar ways of addressing the same question;

Is there significantly priced volatility risk inherent in option contracts that is not due solely

to the underlying stock? The fact that I find a positive difference between implied prices of

risks suggests the answer is yes. It further provides evidence that options are not redundant

securities.

6 Conclusion

Volatility is generally accepted as playing an important role in determining prices of options.

The evidence of a volatility premium in the index options market is well documented. In

addition, the growing literature on individual stock option returns is largely comprised of

papers examining volatility characteristics and their relation to returns on options. The

well documented differences in the volatility and variance risk premia between index options

15See Figlewski (1989) for example.
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and individual stock options (see Driessen, Maenhout, and Vilkov (2009) and Bakshi and

Kapadia (2003a)) suggests that the volatility risk premium inherent in index options may

not necessarily translate to a similar premium existing in the cross-section of individual

options. In fact, Duarte and Jones (2007) find that volatility risk is not significantly priced

unconditionally in the cross-section of individual option returns and Di Pietro and Vainberg

(2006) find volatility risk has the opposite sign in the cross-section of synthetic variance

swaps as in the cross-section of stock returns.

Until now evidence had suggested that market-wide volatility may not be priced in in-

dividual stock options. I find that there is strong evidence of a significant market-wide

volatility risk factor in the pricing kernel for options on individual stocks. This factor is

economically and statistically very significant. My results lend support to recent papers like

Dittmar and Lundblad (2014), Boguth and Kuehn (2013), Campbell, Giglio, Polk, and Tur-

ley (2012) and Bansal, Kiku, Shaliastovich, and Yaron (2013) all of which suggest volatility

is a priced state variable in the ICAPM sense. If volatility is a state variable in the ICAPM

sense, it should be priced in the cross-section of individual options as well. The results of

this paper thus make the make plausible the argument for volatility as a state factor.

I further find evidence that the price of market-wide volatility risk is greater in the

the options than in the underlying stocks. This suggests that options are not redundant

securities. Furthermore, it suggests that a potential reason for the existence of the option

market may be as a market for hedging market-wide volatility risk.
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Table 1: Options Sample
This table gives the number of option contracts considered in our sample for each of the
six call/put and moneyness bins over the 200 month sample from January 1997 through
August 2013. There are a total of 599,803 options in the filtered data.

Number of Options

OTM ATM ITM
Calls 93,658 127,423 77,348
Puts 101,925 107,419 92,030

Table 2: Option Leverage Estimates
This table gives summary statistics for the Black-Scholes-Merton estimates of leverage in
individual stock options in the sample.

Option Leverage

OTM ATM ITM

mean std dev mean std dev mean std dev
Calls 18.31 7.33 14.79 6.43 8.16 3.48
Puts -15.37 6.65 -13.03 6.20 -7.36 3.83
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Table 3: Summary statistics for 36 value-weighted option portfolios
This table reports summary statistics for each of the 36 value-weighted option portfolios.
Columns represent OTM, ATM or ITM calls and puts. Rows represent portfolios sorted
by implied volatility premium (IVP) within each moneyness, option-type portfolio; IVP1
denotes portfolio with the smallest implied volatility premium while IVP6 represents the
portfolio with largest implied volatility premium. Mean and volatility are reported in terms
of annualized returns in percent. Skewness and kurtosis are measures of monthly hold-
ing period returns. The sample covers 200 months, from January 1997 through August 2013.

Calls Puts Calls Puts

OTM ATM ITM OTM ATM ITM OTM ATM ITM OTM ATM ITM

IVP A. Mean (%) B. Volatility (%)

IVP1 3.963 5.818 4.799 4.525 5.532 8.654 33.245 25.593 24.323 42.037 34.630 29.701
IVP2 3.190 5.148 6.082 13.427 8.392 8.466 21.402 19.201 17.955 29.903 26.582 22.706
IVP3 4.704 5.437 4.905 16.617 11.619 13.673 19.859 16.802 17.207 29.806 23.699 21.198
IVP4 3.224 6.281 8.046 17.635 14.150 13.560 18.007 17.121 17.703 29.935 25.196 21.541
IVP5 -5.258 4.395 7.737 25.768 22.448 13.171 18.728 20.395 20.362 31.417 26.620 26.335
IVP6 -14.171 -2.688 1.223 33.907 24.271 25.377 22.941 24.516 26.332 35.676 34.025 28.949

C. Skewness D. Kurtosis

IVP1 5.777 2.611 1.759 -3.343 -2.330 -1.544 9.153 6.475 4.980 11.108 9.838 6.732
IVP2 2.073 1.291 0.315 -3.144 -2.227 -1.306 9.630 6.677 3.935 10.415 10.161 6.168
IVP3 1.993 0.760 0.163 -3.520 -1.902 -1.374 8.812 4.162 3.763 12.348 8.491 6.034
IVP4 1.083 0.481 0.015 -3.706 -2.085 -1.496 4.008 3.572 4.009 14.615 9.633 7.398
IVP5 1.669 0.925 -0.152 -3.057 -2.210 -1.334 7.677 5.343 4.423 11.579 11.809 7.446
IVP6 1.708 0.775 0.030 -2.248 -1.478 -0.929 7.936 4.741 4.073 7.201 8.092 6.448

E. CAPM beta F. Volatility beta (2 factor model)

IVP1 0.874 0.886 0.943 1.589 1.456 1.292 0.545 0.445 0.238 -0.610 -0.394 -0.191
IVP2 0.612 0.726 0.779 1.228 1.179 1.063 0.306 0.180 0.012 -0.616 -0.421 -0.240
IVP3 0.622 0.650 0.766 1.174 1.089 0.988 0.197 0.145 -0.053 -0.663 -0.419 -0.321
IVP4 0.571 0.720 0.816 1.231 1.123 1.009 0.232 0.109 -0.050 -0.697 -0.521 -0.374
IVP5 0.571 0.796 0.913 1.247 1.150 1.130 0.072 0.123 -0.072 -0.851 -0.635 -0.441
IVP6 0.617 0.925 1.073 1.194 1.338 1.180 0.225 0.092 -0.038 -0.720 -0.657 -0.451
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Table 4: Summary statistics for stock portfolios
This table reports summary statistics for the stock portfolios formed according to the double
sorting procedure. Where the first sort is by βM , each stock’s market beta. The second
sort is by β∆V IX , stock loading on changes in the VIX. Mean and volatility are reported
in terms of annualized returns in percent. Skewness and kurtosis are measures of monthly
holding period returns. The sample includes all CRSP stocks and covers 200 months, from
January 1997 through August 2013.

Stock Portfolios

βM βM

(1) (2) (1) (2)

β∆V IX A. Mean (%) B. Volatility (%)

(1) 11.023 12.499 18.526 30.168
(2) 7.862 7.785 14.912 24.610
(3) 7.987 8.718 14.181 22.403
(4) 6.208 10.955 14.604 24.414
(5) 8.524 11.884 15.761 26.514
(6) 7.494 4.996 22.102 33.240

C. Skewness D. Kurtosis

(1) -0.660 -0.908 4.918 6.458
(2) -1.078 -1.208 4.936 7.320
(3) -1.429 -0.861 7.186 7.094
(4) -1.354 -0.232 7.263 5.967
(5) -1.126 -0.431 5.801 5.600
(6) -1.307 -0.416 6.504 5.115

E. CAPM beta F. Volatility beta

(1) 0.810 1.417 -0.094 -0.074
(2) 0.679 1.210 -0.082 0.055
(3) 0.654 1.115 -0.097 0.013
(4) 0.661 1.209 -0.158 0.008
(5) 0.716 1.289 -0.076 0.040
(6) 0.945 1.535 -0.101 0.149
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Table 5: Risk factor correlations
This table presents correlations between the risk factors examined in the paper. Construc-
tion of the factors is described in Section 2.4. The sample covers 200 months, from January
1997 through August 2013.

Factor Correlations

MKT SMB HML Mom VOL VOL⊥ DS Skew Jump VJ
MKT 1.000
SMB 0.304 1.000
HML -0.092 -0.148 1.000
Mom -0.348 -0.048 -0.305 1.000
VOL -0.777 -0.218 -0.002 0.284 1.000
VOL⊥ 0.000 0.028 -0.117 0.022 0.630 1.000
DS 0.755 0.260 0.046 -0.215 -0.693 -0.168 1.000
Skew -0.213 -0.079 -0.114 -0.040 0.339 0.275 -0.673 1.000
Jump 0.480 0.224 0.141 -0.119 -0.456 -0.131 0.674 -0.602 1.000
VJ -0.501 -0.281 -0.103 0.120 0.502 0.178 -0.621 0.368 -0.700 1.000
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Table 6: Linear GMM Tests with 36 Option Portfolios
This table reports results of GMM tests of linear pricing kernels using all 36 options port-
folios as test assets. Each row represents a model and columns represent factors included
in the model. The point estimates are reported along with t-statistics in parentheses that
are computed using Newey-West adjusted standard errors with 6-month lags. The final
two columns give the J-statistic with corresponding asymptotic p-value in [brackets] and
the Hansen-Jagannathan measure of distance from the space of valid stochastic discount
factors.

All 36 Options Portfolios

intercept MKT SMB HML MOM VOL Jstat HJ dist
(1) 0.960 13.915 141.749 0.671

(40.172) (5.399) [0.000]

(2) 1.014 -0.026 167.332 0.708
(92.067) (-2.802) [0.000]

(3) 0.962 0.015 14.084 139.063 0.684
(38.065) (1.303) (5.340) [0.000]

(4) 1.081 -0.019 0.941 -250.931 9.075 128.420 0.813
(13.471) (-0.776) (0.132) (-3.244) (2.666) [0.000]

(5) 0.991 0.006 -0.153 -55.246 3.260 17.536 73.384 0.668
(9.249) (0.221) (-0.024) (-1.068) (1.577) (3.660) [0.000]
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Table 7: Linear GMM Tests ATM Portfolios
This table reports results of GMM tests of pricing kernels using the combination of 6 ATM
put portfolios and 6 ATM call portfolios as test assets. Each row represents a model and
columns represent factors included in the model. The point estimates are reported along
with t-statistics in parentheses that are computed using Newey-West adjusted standard
errors with 6-month lags. The final two columns give the J-statistic with corresponding
asymptotic p-value in [brackets] and the Hansen-Jagannathan measure of distance from the
space of valid stochastic discount factors.

ATM calls and puts

intercept MKT SMB HML MOM VOL Jstat HJ dist
(1) 1.021 15.982 16.714 0.324

(23.410) (3.498) [0.117]

(2) 1.010 -0.019 26.991 0.388
(88.323) (-1.528) [0.005]

(3) 1.020 -0.004 15.718 17.123 0.322
(23.772) (-0.212) (3.364) [0.072]

(4) 1.182 0.003 -14.857 -179.253 -0.950 29.922 0.385
(14.540) (0.098) (-1.549) (-2.348) (-0.167) [0.000]

(5) 0.981 -0.037 2.896 39.551 -6.911 15.278 12.277 0.325
(15.764) (-1.452) (0.374) (0.456) (-1.674) (2.288) [0.092]
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Table 8: Linear GMM Tests for Stocks
This table reports results of GMM tests of pricing kernels using the 12 stock portfolios as
test assets. Each row represents a model and columns represent factors included in the
model. The point estimates are reported along with t-statistics in parentheses that are
computed using Newey-West adjusted standard errors with 6-month lags. The final two
columns give the J-statistic with corresponding asymptotic p-value in [brackets] and the
Hansen-Jagannathan measure of distance from the space of valid stochastic discount factors.

Stock Portfolios
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) 0.992 12.005 28.838 0.297
(20.707) (2.011) [0.002]

(2) 1.011 -0.025 25.149 0.306
(74.416) (-1.974) [0.009]

(3) 1.008 -0.047 11.842 25.139 0.335
(25.507) (-2.298) (1.768) [0.005]

(4) 1.061 -0.062 2.107 -35.335 -4.288 17.426 0.363
(20.830) (-2.045) (0.449) (-0.516) (-1.284) [0.026]

(5) 1.006 -0.024 9.532 139.756 5.472 11.644 9.287 0.312
(9.490) (-0.534) (1.127) (1.017) (0.939) (1.513) [0.233]
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Table 9: Linear GMM Tests for Combined Stock Portfolios and ATM Options
This table reports results of GMM tests of pricing kernels using the 12 ATM option
portfolios combined with the 12 stock portfolios as test assets. Each row represents a model
and columns represent factors included in the model. The point estimates are reported along
with t-statistics in parentheses that are computed using Newey-West adjusted standard
errors with 6-month lags. The final two columns give the J-statistic with corresponding
asymptotic p-value in [brackets] and the Hansen-Jagannathan measure of distance from the
space of valid stochastic discount factors.

12 ATM Options Portfolios and 12 Stock Portfolios

intercept MKT SMB HML MOM VOL Jstat HJ dist
(1) 0.981 8.262 88.983 0.505

(57.297) (3.165) [0.000]

(2) 1.023 -0.038 84.117 0.560
(63.870) (-3.416) [0.000]

(3) 0.994 -0.030 9.052 83.737 0.504
(44.188) (-2.204) (3.000) [0.000]

(4) 1.121 -0.068 2.004 -182.055 -4.373 74.183 0.607
(21.060) (-3.891) (0.517) (-3.611) (-1.868) [0.000]

(5) 1.031 -0.046 0.801 -95.068 -1.797 9.460 73.399 0.523
(22.574) (-2.588) (0.234) (-2.182) (-0.945) (2.828) [0.000]
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Table 10: GMM tests 36 option portfolios and Exponentially Affine SDF
This table reports results of GMM tests of exponentially affine pricing kernels using all 36
option portfolios. This is the only table in the paper that reports results for the 1-step
GMM with an identity weighting matrix. I use this test instead of the 2-step GMM for this
particular test in order to avoid problems associated with multiple-step GMM estimation of
non-linear models when the time series of observations is not long compared to the number
of test assets. Each row represents a model and columns represent factors included in the
model. The point estimates are reported along with t-statistics in parentheses that are
computed using Newey-West adjusted standard errors with 6-month lags. The final two
columns give the J-statistic with corresponding asymptotic p-value in [brackets] and the
Hansen-Jagannathan measure of distance from the space of valid stochastic discount factors.

36 Options Exponentially Affine SDF

intercept MKT SMB HML MOM VOL Jstat HJ dist
(1) -0.068 10.578 164.526 0.669

-(1.026) (1.878) [0.000]

(2) -0.000 -0.035 167.256 0.680
(-0.045) (-1.601) [0.000]

(3) -0.063 -0.002 10.230 163.140 0.678
(-1.010) (-0.072) (1.966) [0.000]

(4) -0.075 -0.012 1.034 -57.061 4.521 187.225 0.935
(-1.114) (-0.516) (0.119) (-0.560) (1.110) [0.000]

(5) -0.259 -0.001 11.357 68.002 2.679 15.457 127.853 0.694
(-1.573) (-0.036) (1.196) (0.962) (0.774) (2.748) [0.000]
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Table 11: GMM tests ATM option portfolios and Exponentially Affine SDF
This table reports results of GMM tests of exponentially affine pricing kernels using port-
folios the 12 ATM option portfolios. Each row represents a model and columns represent
factors included in the model. The point estimates are reported along with t-statistics in
parentheses that are computed using Newey-West adjusted standard errors with 6-month
lags. The final two columns give the J-statistic with corresponding asymptotic p-value
in [brackets] and the Hansen-Jagannathan measure of distance from the space of valid
stochastic discount factors.

ATM Options Exponentially Affine SDF

intercept MKT SMB HML MOM VOL Jstat HJ dist
(1) -0.089 12.518 19.560 0.330

-(1.767) (2.999) [0.052]

(2) 0.004 -0.017 26.480 0.386
(0.677) (-1.492) [0.006]

(3) -0.085 -0.002 12.219 19.700 0.329
(-1.705) (-0.117) (2.918) [0.032]

(4) -0.341 -0.036 -22.754 -303.736 -12.031 23.305 0.458
(-1.165) (-1.767) (-2.478) (-4.172) (-2.989) [0.003]

(5) -0.505 0.002 -22.518 -160.048 -11.553 16.424 8.434 0.378
(-1.655) (0.071) (-2.272) (-1.304) (-2.069) (2.379) [0.296]
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Table 12: GMM tests 12 Stock Portfolios and Exponentially Affine SDF
This table reports results of GMM tests of exponentially affine pricing kernels using the
12 stock portfolios. Each row represents a model and columns represent factors included
in the model. The point estimates are reported along with t-statistics in parentheses that
are computed using Newey-West adjusted standard errors with 6-month lags. The final
two columns give the J-statistic with corresponding asymptotic p-value in [brackets] and
the Hansen-Jagannathan measure of distance from the space of valid stochastic discount
factors.

12 Stock Portfolios
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) -0.013 -3.241 35.386 0.297
(-0.246) (-0.232) [0.006]

(2) -0.001 -0.010 26.088 0.310
(-0.151) (-0.632) [0.073]

(3) -0.033 -0.010 7.535 25.454 0.347
(-0.420) (-0.585) (0.814) [0.062]

(4) -0.001 -0.019 2.300 -8.952 -0.538 25.046 0.367
(-0.028) (-0.896) (0.448) (-0.123) (-0.185) [0.034]

(5) -0.136 -0.001 2.086 59.796 2.487 12.436 22.345 0.452
(-0.871) (-0.048) (0.361) (0.859) (0.650) (1.445) [0.050]
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Table 13: GMM Tests with Exponentially Affine SDF
This table reports results of GMM tests of exponentially affine pricing kernels using

portfolios the 12 ATM option portfolios combined with the 12 stock portfolios. Each row
represents a model and columns represent factors included in the model. The point

estimates are reported along with t-statistics in parentheses that are computed using
Newey-West adjusted standard errors with 6-month lags. The final two columns give the

J-statistic with corresponding asymptotic p-value in [brackets] and the
Hansen-Jagannathan measure of distance from the space of valid stochastic discount

factors.
12 ATM Option Portfolios and 12 Stock Portfolios

intercept MKT SMB HML MOM VOL Jstat HJ dist
(1) -0.053 6.301 85.832 0.516

(-2.947) (2.184) [0.000]

(2) 0.004 -0.031 86.080 0.554
(0.643) (-2.984) [0.000]

(3) -0.046 -0.019 6.150 83.037 0.512
(-2.757) (-1.733) (2.092) [0.000]

(4) -0.036 -0.043 4.907 -120.448 -2.315 81.892 0.636
(-0.852) (-3.061) (0.958) (-2.619) (-1.116) [0.000]

(5) -0.105 -0.031 4.972 -97.279 -1.535 8.349 67.327 0.556
(-2.146) (-2.053) (0.875) (-1.794) (-0.659) (2.665) [0.000]
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Table 14: Linear GMM tests with Tail Risk
This table reports results of GMM tests of pricing kernels using all 36 options portfolios
as test assets. Each row represents a model and columns represent factors included in the
model. The point estimates are reported along with t-statistics in parentheses that are
computed using Newey-West adjusted standard errors with 6-month lags. The final two
columns give the J-statistic with corresponding asymptotic p-value in [brackets] and the
Hansen-Jagannathan measure of distance from the space of valid stochastic discount factors.

All 36 Options Portfolios
intercept MKT SMB HML MOM VOL DS SKEW JUMP VOL JUMP Jstat HJ dist

(1) 1.069 -0.052 19.435 13.801 63.047 0.670
(17.045) (-1.965) (5.520) (3.454) [0.001]

(2) 0.985 -0.021 13.326 -6.255 59.437 0.685
(11.144) (-0.866) (3.033) (-1.709) [0.003]

(3) 1.013 -0.008 17.739 0.645 91.861 0.686
(19.489) (-0.491) (5.570) (0.606) [0.000]

(4) 1.115 -0.020 17.256 -6.920 95.473 0.686
(18.961) (-1.076) (5.710) (-3.107) [0.000]

(5) 1.126 -0.066 -2.818 8.808 2.838 21.913 13.933 43.186 0.633
(10.086) (-1.805) (-0.481) (0.144) (1.573) (3.937) (2.450) [0.056]

(6) 0.835 -0.008 -5.807 15.057 3.514 17.502 -7.773 48.943 0.699
(9.206) (-1.213) (-1.280) (0.154) (1.569) (3.064) (-1.850) [0.141]

(7) 1.093 -0.011 1.002 -67.713 2.490 18.722 0.655 63.720 0.683
(8.573) (-0.355) (0.154) (-1.176) (0.824) (3.239) (0.424) [0.000]

(8) 1.146 -0.029 1.671 -9.296 2.904 16.517 -5.846 49.337 0.647
(13.055) (-0.999) (0.286) (-0.162) (1.461) (3.711) (-1.386) [0.015]

46



Table 15: Linear GMM Tests with Tail Risk
This table reports results of GMM tests of pricing kernels using the combination of 6 ATM
put portfolios and 6 ATM call portfolios as test assets. Each row represents a model and
columns represent factors included in the model. The point estimates are reported along
with t-statistics in parentheses that are computed using Newey-West adjusted standard
errors with 6-month lags. The final two columns give the J-statistic with corresponding
asymptotic p-value in [brackets] and the Hansen-Jagannathan measure of distance from the
space of valid stochastic discount factors.

ATM Portfolios
intercept MKT SMB HML MOM VOL DS SKEW JUMP VOL JUMP Jstat HJ dist

(1) 1.136 -0.047 19.843 10.239 15.288 0.291
(7.690) (-1.011) (2.245) (1.081) [0.083]

(2) 0.983 -0.003 17.005 -0.318 19.472 0.290
(10.972) (-0.140) (2.688) (-0.144) [0.021]

(3) 0.994 -0.010 16.040 -5.008 17.597 0.325
(18.490) (-0.689) (2.409) (-2.132) [0.057]

(4) 1.129 -0.023 14.137 -3.710 16.065 0.315
(10.510) (-1.041) (3.062) (-0.986) [0.066]

(5) 1.174 -0.084 5.997 72.356 -1.979 24.059 15.124 8.504 0.293
(6.358) (-1.492) (0.649) (0.612) (-0.302) (2.108) (1.260) [0.203]

(6) 0.975 -0.005 -0.120 -2.903 3.374 24.108 -4.972 9.871 0.298
(10.597) (-0.233) (-0.010) (-0.033) (0.515) (2.550) (-1.870) [0.218]

(7) 0.933 -0.023 3.650 13.343 -9.402 11.971 -0.888 16.309 0.319
(10.392) (-0.877) (0.395) (0.152) (-2.419) (1.935) (-0.592) [0.012]

(8) 0.990 -0.042 4.680 63.669 -6.074 15.034 -0.268 11.417 0.336
(7.529) (-1.435) (0.527) (0.701) (-1.402) (2.096) (-0.063) [0.076]
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Table 16: Linear GMM Tests with Tail Risk
This table reports results of GMM tests of pricing kernels using 12 stock portfolios as
test assets. Each row represents a model and columns represent factors included in the
model. The point estimates are reported along with t-statistics in parentheses that are
computed using Newey-West adjusted standard errors with 6-month lags. The final two
columns give the J-statistic with corresponding asymptotic p-value in [brackets] and the
Hansen-Jagannathan measure of distance from the space of valid stochastic discount factors.

12 Stock Portfolios
intercept MKT SMB HML MOM VOL DS SKEW JUMP VOL JUMP Jstat HJ dist

(1) 1.025 -0.049 13.116 4.340 19.652 0.259
(11.794) (-1.611) (2.077) (0.675) [0.186]

(2) 0.958 -0.036 13.527 -2.353 20.648 0.383
(19.566) (-2.044) (1.831) (-1.094) [0.148]

(3) 0.991 -0.039 15.546 0.445 20.668 0.188
(21.655) (-2.209) (2.159) (0.448) [0.148]

(4) 1.001 -0.042 12.859 -1.497 19.939 0.276
(9.096) (-1.954) (1.874) (-0.386) [0.174]

(5) 1.022 -0.056 0.716 5.890 0.515 13.858 4.026 18.971 0.269
(6.188) (-0.860) (0.174) (0.127) (0.163) (2.438) (0.379) [0.089]

(6) 1.009 -0.054 -4.181 -61.357 -4.002 9.870 -5.858 18.032 0.229
(12.897) (-1.762) (-0.716) (-0.732) (-0.857) (1.213) (-1.282) [0.115]

(7) 0.981 -0.038 -0.086 -8.364 0.245 11.648 0.369 19.014 0.209
(14.028) (-1.264) (-0.021) (-0.212) (0.103) (1.663) (0.293) [0.088]

(8) 0.969 -0.033 -0.773 -6.840 -1.276 10.114 -0.749 18.379 0.281
(2.504) (-0.626) (-0.074) (-0.058) (-0.322 (1.595) (-0.065) [0.105]
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Table 17: Linear GMM Tests with Tail Risk
This table reports results of GMM tests of pricing kernels using the 12 ATM option
portfolios combined with the 12 stock portfolios as test assets. Each row represents a model
and columns represent factors included in the model. The point estimates are reported along
with t-statistics in parentheses that are computed using Newey-West adjusted standard
errors with 6-month lags. The final two columns give the J-statistic with corresponding
asymptotic p-value in [brackets] and the Hansen-Jagannathan distance measure.

12 ATM Options Portfolios and 12 Stock Portfolios
intercept MKT SMB HML MOM VOL DS SKEW JUMP VOL JUMP Jstat HJ dist

(1) 1.116 -0.070 15.024 14.377 67.400 0.488
(14.535) (-2.592) (3.819) (2.772) [0.000]

(2) 0.914 -0.018 16.228 -6.837 60.283 0.503
(26.498) (-1.401) (4.171) (-2.990) [0.000]

(3) 1.055 -0.046 10.216 0.417 91.981 0.512
(14.670) (-2.069) (2.575) (0.262) [0.000]

(4) 0.986 -0.036 8.664 -1.638 71.371 0.499
(11.851) (-2.298) (2.812) (-0.532) [0.000]

(5) 1.098 -0.077 5.106 -154.740 0.127 12.847 13.863 49.322 0.565
(8.849) (-2.008) (0.867) (-2.738) (0.044) (2.822) (1.928) [0.000]

(6) 0.881 -0.028 0.848 -127.291 -0.673 15.976 -7.858 45.738 0.537
(16.309) (-1.959) (0.240) (-2.294) (-0.247) (4.210) (-3.808) [0.000]

(7) 1.121 -0.067 1.725 -144.936 -3.695 7.742 0.404 71.455 0.554
(13.555) (-2.581) (0.347) (-2.613) (-1.338) (1.836) (0.214) [0.000]

(8) 1.008 -0.052 -2.301 -96.950 -3.626 8.493 -0.476 61.052 0.532
(10.099) (-2.677) (-0.937) (-2.348) (-1.860) (2.403) (-0.111) [0.000]
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Table 18: GMM Likelihood Ratio-type tests
This table reports results of GMM-based likelihood ratio-type tests of restricting individual
factors to be the same in both the stock SDF and the SDF estimated from option portfolios.
Each pair of numbers represents a test where the model is estimated first under the
restriction that the prices of risk for all risk factors in each model are the same for stocks
and call options. This corresponds to the results in Table 9. This restriction is relaxed for
volatility factor to estimate the unrestricted model. The values in the table are the test
statistic and corresponding p-values in brackets. The null hypothesis is that the price of
risk for the volatility factor are the same in options and stocks. The alternative is that the
price of risk differs between the two markets.

Likelihood Ratio tests

One Factor Model Two Factor Model Five Factor Model

Test Statistic p-value Test Statistic p-value Test Statistic p-value

3.557 0.059 3.002 0.083 4.698 0.030
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Figure 1: Factors
Panel A plots innovations in the VIX. Panel B plots the time series of residuals from regress-
ing VIX innovations on market excess returns (MKT). This is the orthogonalized volatility
factor used in tests throughout the paper. The time series plotted in each Panels C, D, E
and F represent tail risk factors.
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Figure 2: Empirical densities of moneyness, put/call portfolios
Panels A-F plot the empirical densities of OTM Calls, ATM Calls, ITM Calls, OTM Puts,
ATM Puts and ITM Puts respectively. The horizontal axis measures monthly returns and
the vertical axis measures density of the distribution. Each panel has a kernel density
estimate of the realized returns for the 12 stock portfolios overlaying the empirical density
for comparision. Each empirical density in panels A-F is composed of 1,200 observed returns;
200 monthly holding period returns from each of the 6 implied volatility premium portfolios
within a given moneyness-put/call portfolio. Panel G plots the combined ATM calls and
ATM puts. Panels H and I plot the empirical densities of all call portfolios and all put
portfolios respectively, across all three moneyness bins.
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